DESCRIPTION OF MARS/MAC TASKS

MARS/MAC assessments are always given in the spring.

COURSE ONE: ALGEBRA

- DATA/DATA ANALYSIS and STATISTICS

1999: Heart Beat: analyze data, draw a scatter plot, interpret the scatter plot, and make some predictions
2000: Rope: interpret points on a graph showing the relationship between the length of the rope and the weight of the rope
2001: Airplanes: plot a scatter graph to compare data and use the scatter plot to estimate values
2002: Pizza Sales: plot a scatter graph and use the scatter plot to estimate values
2003: Snakes: match given data to one of two different scatter plots
2004: Population: interpret a scatter plot and use it to determine calculations for specific questions
2005: Scatter Diagram: using test score data, plot the mean and draw a line of best fit then determine which given statements about the data are true or false
2007: House Prices: use a graph to compare house prices with monthly mortgage payments and find a formula showing the relationship between the two; interpret and answer questions about the scatter plot data of wages earned and monthly mortgage payments
2009: Coffee: read and interpret a graph showing the relationship between number of small cups and number of large cups; set up and solve a system of equations

2010: Circles and Graphs: interpret a scatter plot with a direct variation as the line of best fit [relationship between diameter and circumference]; draw a graph of the relationship between radius and circumference; given 5 other relationships, determine which ones are direct variation
2012: Media Surfacing: interpret bi-variate data; determine a line of best fit; estimate a functional value from one axis knowing the value of the other axis
2013: Obstacle Course: interpret data to determine the better mean and better median time; display the data in a graphic form; support your claim as to the better runner using statistics

- REASONING

2005: Multiples of Three: test statements to see if they are true, find examples to match a description, and explain or justify your conclusions
2006: Odd Sums: work with odd, even and consecutive numbers then make and explain justifications about this work
2007: Ash's Puzzle: find numbers that fit given constraints and find rules for sets of numbers
2009: Soup and Beans: understand the equality of a balance scale; write equivalent algebraic expressions; use proportional reasoning to "balance" given information on one scale
2010: Family: given a set of interrelated clues, reason the relationships of one person to
another
2014: Representing Digits: see structure in expressions; look at three-digit numbers, reverse the order of the digits, take the difference and that difference will always be divisible by 11 ; write an algebraic expression to represent the reversal of the digits; use these two expressions to justify why the difference will always be divisible by 11

- GEOMETRY and MEASUREMENT

1999: Cakes: relate diameter and area when enlarging a circle and use ratio and proportion when changing a recipe
2000: Co-Ordinates: identify congruent triangles and find the area of a tilted square plotted on a coordinate grid
2001: B's: apply rules for circumference and area of circles to a shape \mathbf{B}
2002: Making a Puzzle: using the 12 pentominoes: determine the area of a given rectangle; test a conjecture and explain solutions whether or not some or all of the pentominoes can make a square
2003: Crisscross Numbers: use algebra to explain number patterns found in a hundreds chart
2003: Vacuum Cleaning: using grid and given length of room and vacuum cord, determine what areas of the room can and cannot be cleaned
2004: From 2 to 3 Dimensions: imagine a 3D shape from its 2D net and compare the areas and lengths of the 3 D shape with its 2 D net
2006: Swimming Pool: find the volume of the pool; determine the time it takes to fill the pool; select the graph which best represents the depth of the pool as it fills at a steady rate of one gallon per second
2008: Expressions: work with algebraic expressions for areas and perimeters of parallelograms and trapezoids
2009: Circles and Spheres: match given formulae with respective graph; explain your matches; solve for one variable in terms of the other

2011: Shape Sequence: extend a sequence of rectangle areas; write an algebraic expression for the next rectangle in the sequence
2012: Rectiles: determine areas and dimensions of rectangles; use polynomial equations to represent area models; factor polynomials to determine the dimensions of rectangles; model geometric arrangements with algebraic expressions

- ALGEBRA

1999: Network News: apply a chain of operations shown as a network; infer generalizations about inverse operations
1999: Number Grids: check and prove generalizations about numbers in the hundreds chart 2000: Speed, Distance, Time: using 3 different variable representations for speed, distance and time and given the value of one variable, determine the values of the other two variables in terms of the given value
2000: Building Units: look for a pattern, write a rule for the number of rods needed to build a unit, use the rule to solve problems
2001: Party Flags: given measurement information determine the length of the sides of each flag and the space in between; use this information to express the rule for

the \boldsymbol{n} th flag

2001: Magic Pentagon: similar to a magic square; given \boldsymbol{x} as the corner A, determine the expressions in terms of \boldsymbol{x} for the other corners in the pentagon; solve the equation and complete the pentagon with numerical values
2002: Make Half: solve for values to make fractions of the value $1 / 2$
2002: Number Machines: work with number chains and explain your reasoning
2003: Number Towers: make and solve equations made from a given number pattern
2004: Square Patterns: extend two different patterns using gray and white squares; determine the general rule for any size shape for each pattern
2004: Fibonacci Sequences: use the series to solve number problems using algebra 2005: Magic Squares: use algebraic expressions in magic square cells find the algebraic magic sum then apply this to a numerical magic squares with missing values
2005: Fraction Sequences: extend a given sequence of fractions then calculate and compare decimal values
2006: Printing Tickets: use graphs and formulae to determine the better deal in a cost analysis problem
2006: Graphs: match lines on a graph to the correct written equation
2007: How Old Are They?: translate written words into algebraic expressions; write and solve an equation for an age problem
2007: Two Solutions: find solutions to equations and inequalities
2008: Sidewalk Patterns: extend a geometric pattern and look for pattern/mathematical relationships between white, gray and total number of blocks
2009: Words and Equations: match word situations with two equations
2010: The Trip: write equations; solve a system of equations
2010: Driving: match stories about distance, rate, and time to graphs with no labels; make a graph from a given distance, rate, time situation; make comparisons between two different direct variations and their corresponding graphs
2011: Meal Out: use algebra to represent a real situation; solve an algebraic equation; test solutions to verify correctness of work
2011: Fencing: use algebra to represent a real situation using an appropriate method, i.e., system of equations
2012: Cycle Shop: model a situation using systems of equations; determine unknowns using multiple constraints; solve equations
2013: Number Lines of Inequalities: match inequality number line graphs to the appropriate numerical inequalities; write a set of inequalities to meet the conditions of the given number line graph; draw a number line graph to represent two given inequalities; write a set of inequalities such that the solution set is all real numbers
2013: Speeding Ticket: determine how far a speeding car will travel in one minute; determine the time it will take for the speeding car to reach an exit that is 3.4 miles ahead; write an expression to show the time a chasing police officer has been traveling to catch the speeding car; determine the average speed the police officer must travel to catch the speeding car before the exit

2014: Summer Job: compare three different summer jobs by writing equations given their constraints; determine which job earns the largest salary after working only 9 weeks vs. which job would earn the most after the entire 12 weeks
2014: The Basketball Game: write equations to represent different given scenarios; solve this system of equations to answer the questions

- FUNCTIONS

1999: Swimming Race: interpret a graph and work with speed, distances and time
2000: Courthouse Steps: extend a pattern and find a generalized rule
2001: Trapezoidal Numbers: extend and check a pattern; use values in a table to derive a formula; extrapolate from a graph
2002: Toothpick Stairs: extend and check patterns for perimeter toothpicks and interior toothpicks and determine a generalized rule for each
2003: Conference Tables: extend a pattern which begins with 4 tables and 12 people at size \#1; find a rule for the number of tables for each size number; find a rule for the number of people for each size number; work backwards from 72 people
2004: Graphs: match four descriptions, equations, and graphs to each other
2005: Vacations: match four savings plans for a vacation to a graph, justify your match, match to an algebraic equation, write the missing equation and then write a description for a new and different equation
2006: Patchwork Quilt: extend a table for a pattern using white and black hexagons; work backwards from 66 white hexagons; determine a general rule to determine the number of white hexagons needed for \boldsymbol{n} black hexagons
2007: Graphs: identify a given linear and quadratic graph; use the graph to answer questions; add another linear equation to the graph and answer questions about that equation
2008: Sorting Functions: match the graph, equation, rule and table which are equivalent representations for four situations
2008: Buying Chips and Candy: identify parts of a linear equation, write a linear equation, solve a pair of linear equations and determine is a given value is satisfies the constraints of the problem
2008: Functions: work with graphs and equations of linear and non-linear functions
2009: Quadratic: use a rule; change a rule into an algebraic expression; solve quadratics using graphs; solve quadratics using factoring or the quadratic formula; use algebra to prove equality
2010: Quadratic Graphs: match a quadratic graph to its graphical representation; understand transformations from one equation to another graphically based upon a "parent" quadratic graph and equation; solve a quadratic equation algebraically and graphically
2011: Linear Graphs: match a linear equation to its appropriate graph [4 of them]; draw the the graph of the equation not used; select an equation which could represent the speed of someone walking and explain why; select an equation that could represent conversion between two different monetary currencies
2011: Understanding Graphs: given a table, match a graph with an equation with a math fact and a statement of what these matching representations show mathematically

2012: Represent'n: determine attributes of functions from graphs; match graphs to their functions and tables; complete given tables; match and determine functions to geometric relationships
2012: The Aussie Fir Tree: visualize, extend, and describe a growing pattern; determine a solution to a polynomial relationship; determine an algebraic equation that models the growth of a quadratic function; verify the inverse relationship of the polynomial equation
2013: Katie's Pattern: extend a geometric pattern; determine the functional rule between the pattern number and the number of tiles; use the inverse relationship to explain why there can be no pattern number with 184 tiles; explain why the number of tiles in the pattern will always be even
2013: Consuelo's Graph: find the vertex, zeroes, and function of a given parabola on a Cartesian Co-ordinate Plane; given a function, draw a graph of this linear function; determine and show where the points of intersection are for the parabola and this line
2014: Tran's Triangular Pattern: interpret, extend, draw, find the area of, and write a functional rule for the number of black unit triangles and the area of white space in the triangular pattern
2014: Olympic Event: in the context of an Olympic track meet, calculate and interpret the average rate of change over a specified interval and determine an explicit expression, a recursive process, or steps for calculations from this context

